Diversification of EPR signatures in Site Directed Spin Labeling using a β-phosphorylated nitroxide.

نویسندگان

  • Nolwenn Le Breton
  • Marlène Martinho
  • Kuanysh Kabytaev
  • Jérémie Topin
  • Elisabetta Mileo
  • David Blocquel
  • Johnny Habchi
  • Sonia Longhi
  • Antal Rockenbauer
  • Jérôme Golebiowski
  • Bruno Guigliarelli
  • Sylvain R A Marque
  • Valérie Belle
چکیده

Site Directed Spin Labeling (SDSL) combined with EPR spectroscopy is a very powerful approach to investigate structural transitions in proteins in particular flexible or even disordered ones. Conventional spin labels are based on nitroxide derivatives leading to classical 3-line spectra whose spectral shapes are indicative of the environment of the labels and thus constitute good reporters of structural modifications. However, the similarity of these spectral shapes precludes probing two regions of a protein or two partner proteins simultaneously. To overcome the limitation due to the weak diversity of nitroxide label EPR spectral shapes, we designed a new spin label based on a β-phosphorylated nitroxide giving 6-line spectra. This paper describes the synthesis of this new spin label, its grafting at four different positions of a model disordered protein able to undergo an induced α-helical folding and its characterization by EPR spectroscopy. For comparative purposes, a classical nitroxide has been grafted at the same positions of the model protein. The ability of the new label to report on structural transitions was evaluated by analyzing the spectral shape modifications induced either by the presence of a secondary structure stabilizer (trifluoroethanol) or by the presence of a partner protein. Taken together the results demonstrate that the new phosphorylated label gives a very distinguishable signature which is able to report from subtle to larger structural transitions, as efficiently as the classical spin label. As a complementary approach, molecular dynamics (MD) calculations were performed to gain further insights into the binding process between the labeled NTAIL and PXD. MD calculations revealed that the new label does not disturb the interaction between the two partner proteins and reinforced the conclusion on its ability to probe different local environments in a protein. Taken together this study represents an important step forward in the extension of the panoply of SDSL-EPR approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site-directed spin labeling measurements of nanometer distances in nucleic acids using a sequence-independent nitroxide probe

In site-directed spin labeling (SDSL), local structural and dynamic information is obtained via electron paramagnetic resonance (EPR) spectroscopy of a stable nitroxide radical attached site-specifically to a macromolecule. Analysis of electron spin dipolar interactions between pairs of nitroxides yields the inter-nitroxide distance, which provides quantitative structural information. The devel...

متن کامل

Characterizing the Dynamics of the Leader–Linker Interaction in the Glycine Riboswitch with Site-Directed Spin Labeling

Site-directed spin labeling with continuous wave electron paramagnetic resonance (EPR) spectroscopy was utilized to characterize dynamic features of the kink-turn motif formed through a leader-linker interaction in the Vibrio cholerae glycine riboswitch. Efficient incorporation of spin-labels into select sites within the phosphate backbone of the leader-linker region proceeded via splinted liga...

متن کامل

A facile method for attaching nitroxide spin labels at the 5′ terminus of nucleic acids†

In site-directed spin labeling (SDSL), a nitroxide moiety containing a stable, unpaired electron is covalently attached to a specific site within a macromolecule, and structural and dynamic information at the labeling site is obtained via electron paramagnetic resonance (EPR) spectroscopy. Successful SDSL requires efficient site-specific incorporation of nitroxides. Work reported here presents ...

متن کامل

Motions of the substrate recognition duplex in a group I intron assessed by site-directed spin labeling.

The Tetrahymena group I intron recognizes its oligonucleotide substrate in a two-step process. First, a substrate recognition duplex, called the P1 duplex, is formed. The P1 duplex then docks into the prefolded ribozyme core by forming tertiary contacts. P1 docking controls both the rate and the fidelity of substrate cleavage and has been extensively studied as a model for the formation of RNA ...

متن کامل

Noncovalent and site-directed spin labeling of nucleic acids.

Electron paramagnetic resonance (EPR) spectroscopy is widely used to study free radicals or paramagnetic centers associated with biopolymers. With the advent of pulsed EPR methods, which allow accurate distance measurements between 20 and 80 , structures of biopolymers have increasingly been interrogated by this technique. Some of the advantages of EPR spectroscopy over other structural techniq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 9  شماره 

صفحات  -

تاریخ انتشار 2014